/** * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see * . * * (c) Vincenzo Nicosia 2009-2017 -- * * This file is part of NetBunch, a package for complex network * analysis and modelling. For more information please visit: * * http://www.complex-networks.net/ * * If you use this software, please add a reference to * * V. Latora, V. Nicosia, G. Russo * "Complex Networks: Principles, Methods and Applications" * Cambridge University Press (2017) * ISBN: 9781107103184 * *********************************************************************** * * Compute knn(k) for a given weighted graph. If requested, the * average is computed for ranges of degrees falling into bins of * exponentially increasing width. * * References: * * [1] A. Barrat et al. "The architecture of complex weighted * networks". P. Natl. Acad. Sci USA 101 (2004), 3747-3752. * */ #include #include #include #include #include "utils.h" #include "knntree.h" #define NO_BIN 0x01 #define BIN_LIN 0x02 #define BIN_EXP 0x04 void usage(char *argv[]){ printf("********************************************************************\n" "** **\n" "** -*- knn_w -*- **\n" "** **\n" "** Compute the average nearest-neighbour degree function knn(k) **\n" "** of the weighted graph provided as input. **\n" "** **\n" "** The input file 'graph_in' is an edge-list: **\n" "** **\n" "** I_1 J_1 W_1 **\n" "** I_2 J_2 W_2 **\n" "** I_3 J_3 W_3 **\n" "** ... ... **\n" "** I_K J_K W_K **\n" "** **\n" "** If 'graph_in' is equal to '-' (dash), read the file from **\n" "** the standard input (STDIN). **\n" "** **\n" "** If no second parameter is given (or the second parameter **\n" "** is equal to 'NO'), the program prints on output the value **\n" "** of knn_w(k) for each degree in the graph, in the format: **\n" "** **\n" "** k1 knn_w(k1) **\n" "** k2 knn_w(k2) **\n" "** ..... **\n" "** **\n" "** If the second parameter is 'LIN', the values of knn_w(k) **\n" "** will be grouped into 'bin_param' equal bins. **\n" "** **\n" "** If the second parameter is 'EXP;, the values of knn_w(k) **\n" "** will be grouped into bins whose width increases **\n" "** exponentially with exponent 'bin_param' (also known as **\n" "** 'logarithmic binning'). **\n" "** **\n" "********************************************************************\n" " This is Free Software - You can use and distribute it under \n" " the terms of the GNU General Public License, version 3 or later\n\n" " Please visit http://www.complex-networks.net for more information\n\n" " (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n" "********************************************************************\n\n" ); printf("Usage: %s [ ]\n", argv[0]); } typedef struct{ unsigned int num_bins; unsigned int *degs; double *num; double *values; } knn_hist_t; double neigh_degs_wsum(unsigned int *J_slap, unsigned int *r_slap, double *W_slap, unsigned int idx){ double sum = 0; unsigned j, k; for(j=r_slap[idx]; j < r_slap[idx+1]; j++){ k = J_slap[j]; sum += W_slap[j] * (r_slap[k+1] - r_slap[k]); } return sum; } void compute_knn_w(unsigned int *J_slap, unsigned int *r_slap, double *W_slap, unsigned int N, knntree_t t){ knnsum_t elem, *ptr; unsigned int i; for(i=0; iNk +=1; ptr->knnsum += elem.knnsum; } } } void aggregate_knn(void *elem, void *h){ knn_hist_t *hist; knnsum_t *s; unsigned int cur, low, high; hist = (knn_hist_t*)h; s = (knnsum_t*)elem; cur = hist->num_bins / 2; low = 0; high = hist->num_bins - 1; while (low < high){ if (hist->degs[cur] < s->k){ low = cur+1; } else if(hist->degs[cur] >= s->k){ high = cur; } cur = (high + low) / 2; } hist->num[cur] += s->Nk; hist->values[cur] += s->knnsum; } void print_knn_nobin(knntree_t t){ iltree_view_pre(t); } void print_knn_lin(knntree_t t, unsigned int num_bins){ unsigned int kmin, kmax, step, i; knn_hist_t hist; if (!t){ return; } kmin = ((knnsum_t*)iltree_getmin(t))->k; kmax = ((knnsum_t*)iltree_getmax(t))->k; hist.num_bins = num_bins; step = (kmax - kmin)/num_bins + 1; hist.degs = malloc(num_bins * sizeof(unsigned int)); hist.num = malloc(num_bins * sizeof(double)); hist.values = malloc(num_bins * sizeof(double)); hist.degs[0] = kmin + step; hist.values[0] = 0; hist.num[0] = 0; for(i=1; ik; kmax = ((knnsum_t*)iltree_getmax(t))->k; hist.num_bins = (int)ceil(log(kmax)/log(alpha)) + 1; hist.degs = malloc(hist.num_bins * sizeof(unsigned int)); hist.num = malloc(hist.num_bins * sizeof(double)); hist.values = malloc(hist.num_bins * sizeof(double)); width = 2; hist.degs[0] = kmin + width; hist.values[0] = 0; hist.num[0] = 0; for(i=1; i 2){ /* the user has specified a binning type */ if (!my_strcasecmp(argv[2], "lin")){ bin_type = BIN_LIN; if(argc < 4){ fprintf(stderr, "you must provide a number of bins for linear binning\n"); exit(3); } num_bins = atoi(argv[3]); } else if (!my_strcasecmp(argv[2], "exp")){ bin_type = BIN_EXP; if(argc < 4){ fprintf(stderr, "you must provide an exponent for exponential binning\n"); exit(4); } alpha = atof(argv[3]); } } read_slap_w(filein, &K, &N, &J_slap, &r_slap, &W_slap); fclose(filein); t = knntree_init(t, stdout); compute_knn_w(J_slap, r_slap, W_slap, N, t); switch(bin_type){ case BIN_LIN: print_knn_lin(t, num_bins); break; case BIN_EXP: print_knn_exp(t, alpha); break; default: print_knn_nobin(t); break; } iltree_destroy(t); free(J_slap); free(r_slap); free(W_slap); }