summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKatolaZ <katolaz@yahoo.it>2015-04-23 15:29:46 +0100
committerKatolaZ <katolaz@yahoo.it>2015-04-23 15:29:46 +0100
commit36c4a380493cf29bc1b83635e86383a97cae7dd9 (patch)
tree777ad864a92325f89e9fd552716f48587bafa8f6
parente0b97ed43f8da81ee5865d151ebad7e1d60a55bd (diff)
Version 0.1
-rw-r--r--README.md41
-rw-r--r--python/README.md83
-rw-r--r--python/multired.py487
-rw-r--r--python/test/simple_test.py22
-rw-r--r--python/test/simple_test_approx.py16
-rw-r--r--python/test/test.py34
-rw-r--r--python/test/test_approx.py34
7 files changed, 711 insertions, 6 deletions
diff --git a/README.md b/README.md
index 8c87722..6c22793 100644
--- a/README.md
+++ b/README.md
@@ -1,8 +1,37 @@
-# multired
-Algorithm for structural reduction of multi-layer networks
+#multired
+*
+* Copyright (C) 2015 Vincenzo (Enzo) Nicosia <katolaz@yahoo.it>
+*
+* This program is free software: you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful, but
+* WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* long with this program. If not, see <http://www.gnu.org/licenses/>.
+*
+
+----------------------
+This is multired-0.1.
+
+
+This is a Python implmementation of the algorithm for structural
+reduction of multi-layer networks based on the Von Neumann and on the
+Quantum Jensen-Shannon divergence of graphs, as explained in:
+
+ M. De Domenico. V. Nicosia, A. Arenas, V. Latora
+ "Structural reducibility of multilayer networks",
+ Nat. Commun. 6, 6864 (2015) doi:10.1038/ncomms7864
+
+If you happen to find any use of this code please do not forget to
+cite that paper ;-)
+
+My plan is to provide also a C version in the future, but I cannot
+guarantee that I will do so anytime soon.
-Please cite:
-M. De Domenico. V. Nicosia, A. Arenas, V. Latora
-"Structural reducibility of multilayer networks",
-Nat. Commun. 7864 (2015) doi:10.1038/ncomms7864
diff --git a/python/README.md b/python/README.md
new file mode 100644
index 0000000..b63b36c
--- /dev/null
+++ b/python/README.md
@@ -0,0 +1,83 @@
+# multired
+/**
+*
+* Copyright (C) 2015 Vincenzo (Enzo) Nicosia <katolaz@yahoo.it>
+*
+*
+* This program is free software: you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful, but
+* WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* long with this program. If not, see <http://www.gnu.org/licenses/>.
+*
+*/
+
+This is multired-0.1.
+
+
+This is a Python implmementation of the algorithm for structural
+reduction of multi-layer networks based on the Von Neumann and on the
+Quantum Jensen-Shannon divergence of graphs, as explained in:
+
+ M. De Domenico. V. Nicosia, A. Arenas, V. Latora
+ "Structural reducibility of multilayer networks",
+ Nat. Commun. 6, 6864 (2015) doi:10.1038/ncomms7864
+
+If you happen to find any use of this code please do not forget to
+cite that paper ;-)
+
+
+--------------------
+ INFO
+--------------------
+
+The module "multired.py" provides the class "multiplex_red", which
+implements the algorithm to reduce a multilayer network described in
+the paper cited above.
+
+In order to use it, you just need to
+
+ import multired as mr
+
+in your python script and create a multiplex_red object. Please make
+sure that "multired.py" is in PYTHONPATH. The constructor requires as
+its first argument the path of a file which in turn contains a list of
+files (one for each line) where the graph of each layer is to be
+found.
+
+The class provides one set of methods which perform the exact
+evaluation of the Von Neumann entropy, and another set of methods
+(those whose name end with the suffix "_approx") which rely on a
+polynomial approximation of the Von Neumann entropy. By default the
+approximation is based on a 10th order polynomial fit of x log(x) in
+[0,1], but the order of the polynomial can be set through the
+parameter "fit_degree" of the constructor.
+
+Several sample scripts can be found in the "test/" directory.
+
+--------------------
+ DEPENDENCIES
+--------------------
+
+The only strict dependencies are a recent version of Python, Numpy and
+SciPy. The methods "draw_dendrogram" and "draw_dendrogram_approx" will
+work only if matplotlib is installed.
+
+The module has been tested on a Debian GNU/Linux system, using:
+
+ - Python 2.7.8,
+ - SciPy 0.13.3
+ - Numpy 1.8.2
+ - matplotlib 1.3.1
+
+but it will almost surely work on other platforms and/or with other
+versions of those packages. If you would like to report a working
+configuration, just email me (the address is at the beginning of this
+file).
diff --git a/python/multired.py b/python/multired.py
new file mode 100644
index 0000000..7482877
--- /dev/null
+++ b/python/multired.py
@@ -0,0 +1,487 @@
+import sys
+import math
+import numpy as np
+from scipy.sparse import csr_matrix, eye
+from scipy.linalg import eigh, eig
+import copy
+from scipy.cluster.hierarchy import linkage, dendrogram
+
+has_matplotlib = False
+
+try:
+ import matplotlib
+ has_matplotlib = True
+
+except ImportError:
+ has_matplotlib = False
+
+
+class XLogx_fit:
+ def __init__(self, degree, npoints= 100, xmax=1):
+ if xmax > 1:
+ xmax = 1
+ self.degree = degree
+ x = np.linspace(0, xmax, npoints)
+ y = [i * math.log(i) for i in x[1:]]
+ y.insert(0, 0)
+ self.fit = np.polyfit(x, y, degree)
+
+ def __getitem__ (self, index):
+ if index <= self.degree:
+ return self.fit[index]
+ else:
+ print "Error!!! Index %d is larger than the degree of the fitting polynomial (%d)" \
+ % (index, degree)
+ sys.exit(-1)
+
+
+class layer:
+ def __init__ (self, layerfile= None, matrix=None):
+ self.N = 0
+ self.num_layer = -1
+ self.fname = layerfile
+ self.adj_matr = None
+ self.laplacian = None
+ self.resc_laplacian = None
+ self.entropy = None
+ self.entropy_approx = None
+ self._ii = []
+ self._jj = []
+ self._ww = []
+ self._matrix_called = False
+ if layerfile != None:
+ try:
+ min_N = 10e10
+ with open(layerfile, "r") as lines:
+ for l in lines:
+ if l[0] == '#':
+ continue
+ elems = l.strip(" \n").split(" ")
+ s = int(elems[0])
+ d = int(elems[1])
+ self._ii.append(s)
+ self._jj.append(d)
+ if s > self.N:
+ self.N = s
+ if d > self.N:
+ self.N = d
+ if s < min_N:
+ min_N = s
+ if d < min_N:
+ min_N = d
+ if len(elems) >2 : ## A weight is specified
+ val = [float(x) if "e" in x or "." in x else int(x) for x in [elems[2]]][0]
+ self._ww.append(float(val))
+ else:
+ self._ww.append(int(1))
+
+ except (IOError):
+ print "Unable to find/open file %s -- Exiting!!!" % layerfile
+ exit(-2)
+ elif matrix != None:
+ self.adj_matr = copy.copy(matrix)
+ self.N, _x = matrix.shape
+ K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
+ D = np.diag(np.diag(K))
+ self.laplacian = csr_matrix(D - self.adj_matr)
+ K = self.laplacian.diagonal().sum()
+ self.resc_laplacian = csr_matrix(self.laplacian / K)
+ self._matrix_called = True
+ else:
+ print "The given matrix is BLANK"
+ def make_matrices(self, N):
+ self.N = N
+ self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N))
+ self.adj_matr = self.adj_matr + self.adj_matr.transpose()
+ K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
+ D = np.diag(np.diag(K))
+ self.laplacian = csr_matrix(D - self.adj_matr)
+ K = self.laplacian.diagonal().sum()
+ self.resc_laplacian = csr_matrix(self.laplacian / K)
+ self._matrix_called = True
+
+ def dump_info(self):
+ N, M = self.adj_matr.shape
+ K = self.adj_matr.nnz
+ sys.stderr.write("Layer File: %s\nNodes: %d Edges: %d\nEntropy: %g Approx. Entropy: %g\n" % \
+ (self.fname, N, K, self.entropy, self.entropy_approx) )
+
+ def compute_VN_entropy(self):
+ eigvals = eigh(self.resc_laplacian.todense())
+
+ self.entropy = 0
+ for l_i in eigvals[0]:
+ if (l_i > 10e-20):
+ self.entropy -= l_i * math.log (l_i)
+
+
+ def compute_VN_entropy_approx(self, poly):
+ p = poly.degree
+ h = - poly[p] * self.N
+ M = csr_matrix(np.eye(self.N))
+ for i in range(p-1, -1, -1):
+ M = M * self.resc_laplacian
+ h += - poly[i] * sum(M.diagonal())
+ self.entropy_approx = h
+
+ def aggregate(self, other_layer):
+ if self.adj_matr != None:
+ self.adj_matr = self.adj_matr + other_layer.adj_matr
+ else:
+ self.adj_matr = copy.copy(other_layer.adj_matr)
+ K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
+ D = np.diag(np.diag(K))
+ self.laplacian = csr_matrix(D - self.adj_matr)
+ K = self.laplacian.diagonal().sum()
+ self.resc_laplacian = csr_matrix(self.laplacian / K)
+ self._matrix_called = True
+
+
+
+class multiplex_red:
+
+ def __init__ (self, multiplexfile, directed = None, fit_degree=10, verbose=False):
+ self.layers = []
+ self.N = 0
+ self.M = 0
+ self.entropy = 0
+ self.entropy_approx = 0
+ self.JSD = None
+ self.JSD_approx = None
+ self.Z = None
+ self.Z_approx = None
+ self.aggr = None
+ self.q_vals = None
+ self.q_vals_approx = None
+ self.fit_degree = fit_degree
+ self.poly = XLogx_fit(self.fit_degree)
+ self.verb = verbose
+ self.cuts = None
+ self.cuts_approx = None
+ try:
+ with open(multiplexfile, "r") as lines:
+ for l in lines:
+ if (self.verb):
+ sys.stderr.write("Loading layer %d from file %s" % (len(self.layers), l))
+ A = layer(l.strip(" \n"))
+ if A.N > self.N:
+ self.N = A.N+1
+ self.layers.append(A)
+ n = 0
+ for l in self.layers:
+ l.make_matrices(self.N)
+ l.num_layer = n
+ n += 1
+ self.M = len(self.layers)
+ except ( IOError):
+ print "Unable to find/open file %s -- Exiting!!!" % layer_file
+ exit(-2)
+
+ def dump_info(self):
+ i = 0
+ for l in self.layers:
+ sys.stderr.write("--------\nLayer: %d\n" % i)
+ l.dump_info()
+ i += 1
+
+
+ def compute_aggregated(self):
+ self.aggr = copy.copy(self.layers[0])
+ self.aggr.entropy = 0
+ self.aggr.entropy_approx = 0
+ for l in self.layers[1:]:
+ self.aggr.aggregate(l)
+
+ def compute_layer_entropies(self):
+ for l in self.layers:
+ l.compute_VN_entropy()
+
+ def compute_layer_entropies_approx(self):
+ for l in self.layers:
+ l.compute_VN_entropy_approx(self.poly)
+
+
+ def compute_multiplex_entropy(self, force_compute=False):
+ ### The entropy of a multiplex is defined as the sum of the entropies of its layers
+ for l in self.layers:
+ if l.entropy == None:
+ l.compute_VN_entropy()
+ self.entropy += l.entropy
+
+ def compute_multiplex_entropy_approx(self, force_compute=False):
+ ### The entropy of a multiplex is defined as the sum of the entropies of its layers
+ for l in self.layers:
+ if l.entropy_approx == None:
+ l.compute_VN_entropy_approx(self.poly)
+ self.entropy_approx += l.entropy_approx
+
+ def compute_JSD_matrix(self):
+ if (self.verb):
+ sys.stderr.write("Computing JSD matrix\n")
+ self.JSD = np.zeros((self.M, self.M))
+ for i in range(len(self.layers)):
+ for j in range(i+1, len(self.layers)):
+ li = self.layers[i]
+ lj = self.layers[j]
+ if not li.entropy:
+ li.compute_VN_entropy()
+ if not lj.entropy:
+ lj.compute_VN_entropy()
+ # m_sigma = (li.resc_laplacian + lj.resc_laplacian)/2.0
+ # m_sigma_entropy = mr.compute_VN_entropy_LR(m_sigma)
+ m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
+ m_sigma = layer(matrix=m_sigma_matr)
+ m_sigma.compute_VN_entropy()
+ d = m_sigma.entropy - 0.5 * (li.entropy + lj.entropy)
+ d = math.sqrt(d)
+ self.JSD[i][j] = d
+ self.JSD[j][i] = d
+ pass
+
+ def compute_JSD_matrix_approx(self):
+ if (self.verb):
+ sys.stderr.write("Computing JSD matrix (approx)\n")
+ self.JSD_approx = np.zeros((self.M, self.M))
+ for i in range(len(self.layers)):
+ for j in range(i+1, len(self.layers)):
+ li = self.layers[i]
+ lj = self.layers[j]
+ if not li.entropy_approx:
+ li.compute_VN_entropy_approx(self.poly)
+ if not lj.entropy_approx:
+ lj.compute_VN_entropy_approx(self.poly)
+ m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
+ m_sigma = layer(matrix=m_sigma_matr)
+ m_sigma.compute_VN_entropy_approx(self.poly)
+ d = m_sigma.entropy_approx - 0.5 * (li.entropy_approx + lj.entropy_approx)
+ d = math.sqrt(d)
+ self.JSD_approx[i][j] = d
+ self.JSD_approx[j][i] = d
+
+ def dump_JSD(self, force_compute=False):
+ if self.JSD == None:
+ if force_compute:
+ self.compute_JSD_matrix()
+ else:
+ print "Error!!! call to dump_JSD but JSD matrix has not been computed!!!"
+ sys.exit(1)
+ idx = 0
+ for i in range(self.len):
+ for j in range(i+1, self.len):
+ print i, j, self.JSD[idx]
+ idx += 1
+
+ def dump_JSD_approx(self, force_compute=False):
+ if self.JSD_approx == None:
+ if force_compute:
+ self.compute_JSD_matrix_approx()
+ else:
+ print "Error!!! call to dump_JSD_approx but JSD approximate matrix has not been computed!!!"
+ sys.exit(1)
+ idx = 0
+ for i in range(self.M):
+ for j in range(i+1, self.M):
+ print i, j, self.JSD_approx[idx]
+ idx += 1
+
+
+ def reduce(self, method="ward"):
+ if (self.verb):
+ sys.stderr.write("Performing '%s' reduction\n" % method)
+ if self.JSD == None:
+ self.compute_JSD_matrix()
+ self.Z = linkage(self.JSD, method=method)
+ return self.Z
+
+ def reduce_approx(self, method="ward"):
+ if (self.verb):
+ sys.stderr.write("Performing '%s' reduction (approx)\n" % method)
+ if self.JSD_approx == None:
+ self.compute_JSD_matrix_approx()
+ self.Z_approx = linkage(self.JSD_approx, method=method)
+ return self.Z_approx
+
+ def get_linkage(self):
+ return self.Z
+
+ def get_linkage_approx(self):
+ return self.Z_approx
+
+ def __compute_q(self, layers):
+ H_avg = 0
+ if not self.aggr:
+ self.compute_aggregated()
+ self.aggr.compute_VN_entropy()
+ for l in layers:
+ if not l.entropy:
+ l.compute_VN_entropy()
+ H_avg += l.entropy
+ H_avg /= len(layers)
+ q = 1.0 - H_avg / self.aggr.entropy
+ return q
+
+ def get_q_profile(self):
+ mylayers = copy.copy(self.layers)
+ rem_layers = copy.copy(self.layers)
+ q_vals = []
+ if self.Z == None:
+ self.reduce()
+ q = self.__compute_q(rem_layers)
+ q_vals.append(q)
+ n = len(self.layers)
+ for l1, l2, _d, _x in self.Z:
+ l_new = layer(matrix=mylayers[int(l1)].adj_matr)
+ l_new.num_layer = n
+ n += 1
+ l_new.aggregate(mylayers[int(l2)])
+ rem_layers.remove(mylayers[int(l1)])
+ rem_layers.remove(mylayers[int(l2)])
+ rem_layers.append(l_new)
+ mylayers.append(l_new)
+ q = self.__compute_q(rem_layers)
+ q_vals.append(q)
+ self.q_vals = q_vals
+ return q_vals
+ pass
+
+
+ def __compute_q_approx(self, layers):
+ H_avg = 0
+ if not self.aggr:
+ self.compute_aggregated()
+ self.aggr.compute_VN_entropy_approx(self.poly)
+ for l in layers:
+ if not l.entropy_approx:
+ l.compute_VN_entropy_approx(self.poly)
+ H_avg += l.entropy_approx
+ H_avg /= len(layers)
+ q = 1.0 - H_avg / self.aggr.entropy_approx
+ return q
+
+ def get_q_profile_approx(self):
+ mylayers = copy.copy(self.layers)
+ rem_layers = copy.copy(self.layers)
+ q_vals = []
+ if self.Z_approx == None:
+ self.reduce_approx()
+ q = self.__compute_q_approx(rem_layers)
+ q_vals.append(q)
+ n = len(self.layers)
+ for l1, l2, _d, _x in self.Z_approx:
+ l_new = layer(matrix=mylayers[int(l1)].adj_matr)
+ l_new.num_layer = n
+ n += 1
+ l_new.aggregate(mylayers[int(l2)])
+ rem_layers.remove(mylayers[int(l1)])
+ rem_layers.remove(mylayers[int(l2)])
+ rem_layers.append(l_new)
+ mylayers.append(l_new)
+ q = self.__compute_q_approx(rem_layers)
+ q_vals.append(q)
+ self.q_vals_approx = q_vals
+ return q_vals
+
+ def compute_partitions(self):
+ if (self.verb):
+ sys.stderr.write("Getting partitions...\n")
+ if self.Z == None:
+ self.reduce()
+ if self.q_vals == None:
+ self.get_q_profile()
+ sets = {}
+ M = len(self.layers)
+ for i in range(len(self.layers)):
+ sets[i] = [i]
+ best_pos = self.q_vals.index(max(self.q_vals))
+ j = 0
+ cur_part = sets.values()
+ self.cuts = [copy.deepcopy(cur_part)]
+ while j < M-1:
+ l1, l2, _x, _y = self.Z[j]
+ l1 = int(l1)
+ l2 = int(l2)
+ val = sets[l1]
+ val.extend(sets[l2])
+ sets[M+j] = val
+ r1 = cur_part.index(sets[l1])
+ cur_part.pop(r1)
+ r2 = cur_part.index(sets[l2])
+ cur_part.pop(r2)
+ cur_part.append(val)
+ j += 1
+ self.cuts.append(copy.deepcopy(cur_part))
+ self.cuts.append(copy.deepcopy(cur_part))
+ return zip(self.q_vals, self.cuts)
+
+
+ def compute_partitions_approx(self):
+ if (self.verb):
+ sys.stderr.write("Getting partitions (approx)...\n")
+ if self.Z_approx == None:
+ self.reduce_approx()
+ if self.q_vals_approx == None:
+ self.get_q_profile_approx()
+ sets = {}
+ M = len(self.layers)
+ for i in range(len(self.layers)):
+ sets[i] = [i]
+ best_pos = self.q_vals_approx.index(max(self.q_vals_approx))
+ j = 0
+ cur_part = sets.values()
+ self.cuts_approx = [copy.deepcopy(cur_part)]
+ while j < M-1:
+ l1, l2, _x, _y = self.Z_approx[j]
+ l1 = int(l1)
+ l2 = int(l2)
+ val = sets[l1]
+ val.extend(sets[l2])
+ sets[M+j] = val
+ r1 = cur_part.index(sets[l1])
+ cur_part.pop(r1)
+ r2 = cur_part.index(sets[l2])
+ cur_part.pop(r2)
+ cur_part.append(val)
+ j += 1
+ self.cuts_approx.append(copy.deepcopy(cur_part))
+ self.cuts_approx.append(copy.deepcopy(cur_part))
+ return zip(self.q_vals_approx, self.cuts_approx)
+
+ def draw_dendrogram(self, force = False):
+ if not has_matplotlib:
+ sys.stderr.write("No matplotlib module found in draw_dendrogram...Exiting!!!\n")
+ sys.exit(3)
+ if self.Z == None:
+ if not force:
+ sys.stderr.write("Please call reduce() first or specify 'force=True'")
+ else:
+ self.reduce()
+ dendrogram(self.Z, no_plot=False)
+ matplotlib.pyplot.draw()
+ matplotlib.pyplot.show()
+
+ def draw_dendrogram_approx(self, force = False):
+ if not has_matplotlib:
+ sys.stderr.write("No matplotlib module found in draw_dendrogram_approx...Exiting!!!\n")
+ sys.exit(3)
+ if self.Z_approx == None:
+ if not force:
+ sys.stderr.write("Please call reduce_approx() first or specify 'force=True'")
+ else:
+ self.reduce_approx()
+ dendrogram(self.Z_approx, no_plot=False)
+ matplotlib.pyplot.draw()
+ matplotlib.pyplot.show()
+
+ def dump_partitions(self):
+ part = zip(self.q_vals, self.cuts)
+ for q, p in part:
+ print q, "->", p
+
+ def dump_partitions_approx(self):
+ part = zip(self.q_vals_approx, self.cuts_approx)
+ for q, p in part:
+ print q, "->", p
+
+
+
+
diff --git a/python/test/simple_test.py b/python/test/simple_test.py
new file mode 100644
index 0000000..e2919c6
--- /dev/null
+++ b/python/test/simple_test.py
@@ -0,0 +1,22 @@
+import multired as mr
+import sys
+
+
+if len(sys.argv) < 2:
+ print "Usage: %s <layer_list>" % sys.argv[0]
+ sys.exit(1)
+
+print "Loading layers...",
+m = mr.multiplex_red(sys.argv[1], verbose=True)
+print "[DONE]"
+
+print "Getting partitons...",
+part = m.compute_partitions()
+print "[DONE]"
+
+print "Partitions:..."
+m.dump_partitions()
+
+m.draw_dendrogram()
+
+
diff --git a/python/test/simple_test_approx.py b/python/test/simple_test_approx.py
new file mode 100644
index 0000000..fe2ab30
--- /dev/null
+++ b/python/test/simple_test_approx.py
@@ -0,0 +1,16 @@
+import multired as mr
+import sys
+
+
+if len(sys.argv) < 2:
+ print "Usage: %s <layer_list>" % sys.argv[0]
+ sys.exit(1)
+
+m = mr.multiplex_red(sys.argv[1], verbose=True, fit_degree=20)
+part = m.compute_partitions_approx()
+
+print "Partitions:..."
+m.dump_partitions_approx()
+
+m.draw_dendrogram_approx()
+
diff --git a/python/test/test.py b/python/test/test.py
new file mode 100644
index 0000000..5ccb490
--- /dev/null
+++ b/python/test/test.py
@@ -0,0 +1,34 @@
+import multired as mr
+import sys
+
+
+if len(sys.argv) < 2:
+ print "Usage: %s <layer_list>" % sys.argv[0]
+ sys.exit(1)
+
+print "Loading layers...",
+m = mr.multiplex_red(sys.argv[1])
+print "[DONE]"
+
+print "Computing layer entropies...",
+m.compute_layer_entropies()
+print "[DONE]"
+
+print "Computing JSD matrix...",
+m.compute_JSD_matrix()
+print "[DONE]"
+
+print "Performing reduction...",
+m.reduce()
+print "[DONE]"
+
+print "Getting partitons...",
+part = m.compute_partitions()
+print "[DONE]"
+
+print "Partitions:...",
+m.dump_partitions()
+print "[DONE]"
+
+
+
diff --git a/python/test/test_approx.py b/python/test/test_approx.py
new file mode 100644
index 0000000..353436c
--- /dev/null
+++ b/python/test/test_approx.py
@@ -0,0 +1,34 @@
+import multired as mr
+import sys
+
+
+if len(sys.argv) < 2:
+ print "Usage: %s <layer_list>" % sys.argv[0]
+ sys.exit(1)
+
+print "Loading layers...",
+m = mr.multiplex_red(sys.argv[1])
+print "[DONE]"
+
+print "Computing layer entropies (approx)...",
+m.compute_layer_entropies_approx()
+print "[DONE]"
+
+print "Computing JSD matrix (approx)...",
+m.compute_JSD_matrix_approx()
+print "[DONE]"
+
+print "Performing reduction (approx)...",
+m.reduce_approx()
+print "[DONE]"
+
+
+print "Getting partitons...",
+part = m.compute_partitions_approx()
+print "[DONE]"
+
+print "Partitions:..."
+m.dump_partitions_approx()
+print "[DONE]"
+
+