summaryrefslogtreecommitdiff
path: root/doc/hv_net.md
diff options
context:
space:
mode:
authorKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
committerKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
commit3aee2fd43e3059a699af2b63c6f2395e5a55e515 (patch)
tree58c95505a0906ed9cfa694f9dbd319403fd8f01d /doc/hv_net.md
First commit on github -- NetBunch 1.0
Diffstat (limited to 'doc/hv_net.md')
-rw-r--r--doc/hv_net.md72
1 files changed, 72 insertions, 0 deletions
diff --git a/doc/hv_net.md b/doc/hv_net.md
new file mode 100644
index 0000000..89bcce1
--- /dev/null
+++ b/doc/hv_net.md
@@ -0,0 +1,72 @@
+hv_net(1) -- Sample a random graph with an assigned joint degree distribution
+======
+
+## SYNOPSIS
+
+`hv_net` <graph_in> [SHOW]
+
+## DESCRIPTION
+
+`hv_net` samples a random graph whose joint degree distribution is
+equal to that of another graph provided as input, using the
+hidden-variable model proposed by Boguna ans Pastor-Satorras.
+
+## PARAMETERS
+
+* <graph_in>:
+ File containing the edge list of the existing graph. If equal to
+ '-' (dash), read the edge list from STDIN.
+
+* SHOW:
+ If the second parameter is equal to `SHOW`, the program prints on
+ STDERR the hidden variable and actual degree of each node.
+
+## EXAMPLES
+
+Let us assume that we want to create a graph whose joint degree
+distribution is equal to that of the graph contained in
+`AS-20010316.net` (i.e., the graph of the Internet at the AS level in
+March 2001). We can use the command:
+
+ $ hv_net AS-20010316.net > AS-20010316.net_rand
+
+which will sample a random graph with the same joint-degree
+distribution and will save its edge list in the file
+`AS-20010316.net_rand` (notice the STDOUT redirection operator
+`>`). Additionally, we can also save the values of the hidden
+variables and actual degrees of the nodes by specifying `SHOW` as a
+second parameter:
+
+ $ hv_net AS-20010316.net SHOW > AS-20010316.net_rand 2>AS-20010316.net_rand_hv
+
+In this case, the file `AS-20010316.net_rand_hv` will contain the
+values of the hidden variable of each node and of the actual degree of
+the node in the sampled graph, in the format:
+
+ h1 k1
+ h2 k2
+ ....
+
+
+## SEE ALSO
+
+conf_model_deg(1), conf_model_deg_nocheck(1)
+
+## REFERENCES
+
+* M\. Boguna and R. Pastor-Satorras. "Class of correlated random
+ networks with hidden variables". Phys. Rev. E 68 (2003), 036112.
+
+* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
+ Methods and Applications", Chapter 7, Cambridge University Press
+ (2017)
+
+* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
+ Methods and Applications", Appendix 14, Cambridge University Press
+ (2017)
+
+
+## AUTHORS
+
+(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 `<v.nicosia@qmul.ac.uk>`.
+