summaryrefslogtreecommitdiff
path: root/doc/f3m.1
blob: fb1a919b29de1756cecd9ed382b283a397d78422 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
.\" generated with Ronn/v0.7.3
.\" http://github.com/rtomayko/ronn/tree/0.7.3
.
.TH "F3M" "1" "September 2017" "www.complex-networks.net" "www.complex-networks.net"
.
.SH "NAME"
\fBf3m\fR \- Count all the 3\-node subgraphs of a directed graph
.
.SH "SYNOPSIS"
\fBf3m\fR \fIgraph_in\fR [\fInum_random\fR]
.
.SH "DESCRIPTION"
\fBf3m\fR performs a motif analysis on \fIgraph_in\fR, i\.e\., it counts all the 3\-node subgraphs and computes the z\-score of that count with respect to the corresponding configuration model ensemble\.
.
.SH "PARAMETERS"
.
.TP
\fIgraph_in\fR
input graph (edge list)\. It must be an existing file\.
.
.TP
\fInum_random\fR
The number of random graphs to sample from the configuration model for the computation of the z\-score of the motifs\.
.
.SH "OUTPUT"
\fBf3m\fR prints on the standard output a table with 13 rows, one for each of the 13 possible 3\-node motifs\. Each line is in the format:
.
.IP "" 4
.
.nf

    motif_number  count  mean_rnd  std_rnd  z\-score
.
.fi
.
.IP "" 0
.
.P
where \fBmotif_number\fR is a number between 1 and 13 that identifies the motif (see \fIMOTIF NUMBERS\fR below), \fBcount\fR is the number of subgraphs ot type \fBmotif_number\fR found in \fIgraph_in\fR, \fBmean_rnd\fR is the average number of subgraphs of type \fBmotif_number\fR in the corresponding configuration model ensemble, and \fBstd_rnd\fR is the associated standard deviation\. Finally, \fBz\-score\fR is the quantity:
.
.IP "" 4
.
.nf

   (count \- mean_rnd) / std_rnd
.
.fi
.
.IP "" 0
.
.P
The program also prints a progress bar on STDERR\.
.
.SH "MOTIF NUMBERS"
We report below the correspondence between the 13 possible 3\-node subgraphs and the corresponding \fBmotif_number\fR\. In the diagrams, \'O\-\-\->O\' indicates a single edge form the left node to the right node, while \'O\fI==\fRO\' indicates a double (bi\-directional) edge between the two nodes:
.
.IP "" 4
.
.nf

   (1)  O<\-\-\-O\-\-\->O

   (2)  O\-\-\->O\-\-\->O

   (3)  O<==>O\-\-\->O

   (4)  O\-\-\->O<\-\-\-O

   (5)  O\-\-\->O\-\-\->O
         \e        ^
          \e_______|

   (6)  O<==>O\-\-\->O
         \e        ^
          \e_______|

   (7)  O<==>O<\-\-\-O

   (8)  O<==>O<==>O

   (9)  O<\-\-\-O<\-\-\-O
         \e        ^
          \e_______|

  (10)  O<==>O<\-\-\-O
         \e        ^
          \e_______|

  (11)  O\-\-\->O<==>O
         \e        ^
          \e_______|

  (12)  O<==>O<==>O
         \e        ^
          \e_______|

  (13)  O<==>O<==>O
        ^\e       ^/
         \e\e_____//
          \e_____/
.
.fi
.
.IP "" 0
.
.SH "EXAMPLES"
To perform a motif analysis on the E\.coli transcription regulation graph, using 1000 randomised networks, we run the command:
.
.IP "" 4
.
.nf

    $ f3m e_coli\.net 1000
    1          4760         4400\.11    137\.679     +2\.614
    2           162          188\.78      8\.022     \-3\.338
    3             0            0\.89      3\.903     \-0\.228
    4           226          238\.32      7\.657     \-1\.609
    5            40            6\.54      2\.836    +11\.800
    6             0            0\.01      0\.077     \-0\.078
    7             0            0\.12      0\.642     \-0\.192
    8             0            0\.00      0\.032     \-0\.032
    9             0            0\.01      0\.109     \-0\.110
    10            0            0\.00      0\.000     +0\.000
    11            0            0\.00      0\.032     \-0\.032
    12            0            0\.00      0\.000     +0\.000
    13            0            0\.00      0\.000     +0\.000
    $
.
.fi
.
.IP "" 0
.
.P
Notice that the motif \fB5\fR (the so\-called "feed\-forward loop") has a z\-score equal to 11\.8, meaning that it is highly overrepresented in the E\.coli graph with respect to the corresponding configuration model ensemble\. Conversely, the motif \fB2\fR (three\-node chain) is underrepresented, as made evident by value of the z\-score (\-3\.338)\.
.
.SH "SEE ALSO"
johnson_cycles(1)
.
.SH "REFERENCES"
.
.IP "\(bu" 4
R\. Milo et al\. "Network Motifs: Simple Building Blocks of Complex Networks"\. Science 298 (2002), 824\-827\.
.
.IP "\(bu" 4
R\. Milo et al\. "Superfamilies of evolved and designed networks\." Science 303 (2004), 1538\-1542
.
.IP "\(bu" 4
V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Chapter 8, Cambridge University Press (2017)
.
.IP "\(bu" 4
V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Appendix 16, Cambridge University Press (2017)
.
.IP "" 0
.
.SH "AUTHORS"
(c) Vincenzo \'KatolaZ\' Nicosia 2009\-2017 \fB<v\.nicosia@qmul\.ac\.uk>\fR\.