1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
f3m(1) -- Count all the 3-node subgraphs of a directed graph
======
## SYNOPSIS
`f3m` <graph_in> [<num_random>]
## DESCRIPTION
`f3m` performs a motif analysis on <graph_in>, i.e., it counts all the
3-node subgraphs and computes the z-score of that count with respect
to the corresponding configuration model ensemble.
## PARAMETERS
* <graph_in>:
input graph (edge list). It must be an existing file.
* <num_random>:
The number of random graphs to sample from the configuration model
for the computation of the z-score of the motifs.
## OUTPUT
`f3m` prints on the standard output a table with 13 rows, one for each
of the 13 possible 3-node motifs. Each line is in the format:
motif_number count mean_rnd std_rnd z-score
where `motif_number` is a number between 1 and 13 that identifies the
motif (see [MOTIF NUMBERS][] below), `count` is the number of
subgraphs ot type `motif_number` found in <graph_in>, `mean_rnd` is
the average number of subgraphs of type `motif_number` in the
corresponding configuration model ensemble, and `std_rnd` is the
associated standard deviation. Finally, `z-score` is the quantity:
(count - mean_rnd) / std_rnd
The program also prints a progress bar on STDERR.
## MOTIF NUMBERS
We report below the correspondence between the 13 possible 3-node
subgraphs and the corresponding `motif_number`. In the diagrams,
'O--->O' indicates a single edge form the left node to the right node,
while 'O<==>O' indicates a double (bi-directional) edge between the
two nodes:
(1) O<---O--->O
(2) O--->O--->O
(3) O<==>O--->O
(4) O--->O<---O
(5) O--->O--->O
\ ^
\_______|
(6) O<==>O--->O
\ ^
\_______|
(7) O<==>O<---O
(8) O<==>O<==>O
(9) O<---O<---O
\ ^
\_______|
(10) O<==>O<---O
\ ^
\_______|
(11) O--->O<==>O
\ ^
\_______|
(12) O<==>O<==>O
\ ^
\_______|
(13) O<==>O<==>O
^\ ^/
\\_____//
\_____/
## EXAMPLES
To perform a motif analysis on the E.coli transcription regulation
graph, using 1000 randomised networks, we run the command:
$ f3m e_coli.net 1000
1 4760 4400.11 137.679 +2.614
2 162 188.78 8.022 -3.338
3 0 0.89 3.903 -0.228
4 226 238.32 7.657 -1.609
5 40 6.54 2.836 +11.800
6 0 0.01 0.077 -0.078
7 0 0.12 0.642 -0.192
8 0 0.00 0.032 -0.032
9 0 0.01 0.109 -0.110
10 0 0.00 0.000 +0.000
11 0 0.00 0.032 -0.032
12 0 0.00 0.000 +0.000
13 0 0.00 0.000 +0.000
$
Notice that the motif `5` (the so-called "feed-forward loop") has a
z-score equal to 11.8, meaning that it is highly overrepresented in
the E.coli graph with respect to the corresponding configuration model
ensemble. Conversely, the motif `2` (three-node chain) is
underrepresented, as made evident by value of the z-score (-3.338).
## SEE ALSO
johnson_cycles(1)
## REFERENCES
* R\. Milo et al. "Network Motifs: Simple Building Blocks of Complex
Networks". Science 298 (2002), 824-827.
* R\. Milo et al. "Superfamilies of evolved and designed networks."
Science 303 (2004), 1538-1542
* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Chapter 8, Cambridge University Press
(2017)
* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Appendix 16, Cambridge University Press
(2017)
## AUTHORS
(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 `<v.nicosia@qmul.ac.uk>`.
|