1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* This program creates a network using the Watts-Strogatz
* small-world network model.
*
* References:
*
* D. J. Watts and S. H. Strogatz. "Collective dynamics of
* 'small-world' networks". Nature 393 (1998), 440–442.
*
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "utils.h"
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- ws -*- **\n"
"** **\n"
"** Create a graph with 'N' nodes, using the Watts-Strogatz **\n"
"** small-world network model. The algorithm starts from a **\n"
"** circle graph with 'N' nodes and m*N edges, i.e. by putting **\n"
"** the 'N' nodes around a circle, so that each node is **\n"
"** connected to the 'm' closest nodes in the circle on each **\n"
"** direction. Then, each edge is rewired at random with **\n"
"** probability equal to 'p'. **\n"
"** **\n"
"** The output is an edge list in the format: **\n"
"** **\n"
"** I_1 J_1 **\n"
"** I_2 J_2 **\n"
"** I_3 J_3 **\n"
"** ... ... **\n"
"** I_K J_K **\n"
"** **\n"
"** If 'SHOW' is specified as a fourth parameter, the program **\n"
"** prints on STDERR the number of edges that were actually **\n"
"** rewired. **\n"
"** **\n"
"********************************************************************\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n\n"
"********************************************************************\n\n"
);
printf("Usage: %s <N> <m> <p> [SHOW]\n\n" , argv[0]);
}
/**
*
* This function checks if j is a neighbour of i, looking into the
* m positions of J starting at i*m
*
* In practice, the assumption is that J contains the m neighbours of
* node 0 in the first m positions, then the m neighbours of node 1,
* and to forth
*
*/
int __ws_is_neigh(unsigned int i, unsigned int j, unsigned int *J, unsigned int m){
int k;
for(k = i*m; k< (i+1)*m; k++){
if (J[k] == j)
return 1;
}
return 0;
}
int create_circle(unsigned int N, unsigned int m, unsigned int **J){
int K;
int i, j, l;
K = N *m;
*J = malloc(K * sizeof(unsigned int));
K = 0;
for(i=0; i<N; i++){
for(j=0; j < m; j++){
l = (i + j + 1) % N;
(*J)[K] = l;
K += 1;
}
}
return K;
}
int ws(unsigned int *J, unsigned int N, unsigned int m, double p){
unsigned int i, j, l, l1, num_rewire;
double xi;
num_rewire = 0;
for(i=0; i<N; i++){
for(j=0; j<m; j++){
l = (i+j) % N;
xi = 1.0 * rand() / RAND_MAX;
if (xi < p){
l1 = (int)(rand() % N);
if( (l1 != i) &&
(l1 != l) &&
!(__ws_is_neigh(i, l1, J, m))){
/* replace (i,l) with (i,l1) */
J[m * i + j] = l1;
num_rewire += 1;
}
else{
/* do nothing */
}
}
}
}
return num_rewire;
}
void dump_edges(unsigned int *J, unsigned int N, unsigned int m){
int i, j;
for(i=0; i<N; i++){
for(j=0; j<m; j++){
printf("%d %d\n", i, J[(m*i)+j]);
}
}
}
int main(int argc, char *argv[]){
int N, m, num_rewire;
unsigned int *J;
double p;
if(argc < 4){
usage(argv);
exit(1);
}
J = NULL;
N = atoi(argv[1]);
m = atoi(argv[2]);
p = atof(argv[3]);
create_circle(N, m, &J);
srand(time(NULL));
num_rewire = ws(J, N, m, p);
if (argc > 4 && !my_strcasecmp("SHOW", argv[4])){
fprintf(stderr, "Rewired edges: %d\n", num_rewire);
}
dump_edges(J, N, m);
free(J);
}
|