summaryrefslogtreecommitdiff
path: root/dynamics/randomwalks/statdistr2.c
blob: 10528dafec839b4311d0a66a069169d4690b9d23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "utils.h"


int main(int argc, char *argv[]){

	
	if (argc < 6){
    		printf("Usage: %s <layer1> <layer2> <overlapping network> <N nodes> <b1> <b2>\n", argv[0]);
    		exit(1);
  		}


	/*dichiarazioni enzo*/
	FILE *filein0,*filein1, *filein, *fileout;
 	unsigned int N0, K0,N1, K1, N, K;
 	unsigned int *J_slap0, *r_slap0, *J_slap1, *r_slap1, *J_slap, *r_slap;
	double *w_slap;
	
	/*dichiarazioni mie*/
	/*r_slap e' lungo N+1, da 0 a N compresi*/
	int i, j;
	double f_j, f_j_2;
	double alpha = (atof(argv[5])); 
	double beta = (atof(argv[6]));
	
	/*il bias*/
	int ov;
	int deg0, deg1;
	double degM, prodM, part, intM;
	double degMrid, maxdegM = 200.0;

	int number_nodes=(atoi(argv[4]));
	double M=2.0;
	
	filein0 = openfile_or_exit(argv[1], "r", 2);
  	read_slap(filein0, &K0, &N0, &J_slap0, &r_slap0);

	filein1 = openfile_or_exit(argv[2], "r", 2);
  	read_slap(filein1, &K1, &N1, &J_slap1, &r_slap1);

	
	filein = openfile_or_exit(argv[3], "r", 2);
  	read_slap_w(filein, &K, &N, &J_slap, &r_slap,&w_slap);

	int r_slap0_n[N+1],r_slap1_n[N+1];
	for (i=0; i<=N; i++) {
		if (i<=N0) {
			r_slap0_n[i]=r_slap0[i];
			}
		else {
			r_slap0_n[i]=r_slap0[N0];
			}
		if (i<=N1) {
			r_slap1_n[i]=r_slap1[i];
			}
		else {
			r_slap1_n[i]=r_slap1[N1];
			}
		
		}



	double cf_i_vec_add[N];
	double cf_i_vec_mult[N];
	double cf_i_vec_part[N];
	double cf_i_vec_int[N];
	
	double tot_add=0, tot_mult=0, tot_part=0, tot_int=0;
	double c_i_add, c_i_mult, c_i_part, c_i_int;
	double f_add, f_mult, f_int;
	/*ciclo sui nodi dell'aggregato*/
	for (i=0; i<N; i++) {
		c_i_add=0;
		c_i_mult=0;
		c_i_part=0;
		c_i_int=0;
		
		/*ciclo sui primi vicini di i*/
		for (j=r_slap[i]; j<r_slap[i+1]; j++) {
			ov = w_slap[j];
			
			deg0=r_slap0_n[J_slap[j]+1]-r_slap0_n[J_slap[j]];
			
			deg1=r_slap1_n[J_slap[j]+1]-r_slap1_n[J_slap[j]];
			
			
			degM=(deg0+deg1)*1.0;
			//prodM=(deg0*deg1)*1.0;
			part = (M/(M-1))*  (1-(pow((deg0/degM),2))-(pow((deg1/degM),2))   );
			//intM=degM*part;
			if (deg0>0.0000000001) {
				f_j = pow (deg0, alpha);
				}
			else {
				f_j = 0;
				} 
			if (deg1>0.0000000001) {
				f_j_2 = pow (deg1, beta);
				}
			else {
				f_j_2=0;
				} 

			c_i_add+=ov*(f_j+f_j_2);

			if (deg0>0.0000000001) {
				f_j = pow (deg0, alpha);
				}
			else {
				f_j = 0;
				} 
			if (deg1>0.0000000001) {
				f_j_2 = pow (deg1, beta);
				}
			else {
				f_j_2=0;
				} 

			c_i_mult+=ov*(f_j*f_j_2);
			//c_i_part+=ov*part;

			part = (M/(M-1))*  (1-(pow((deg0/degM),2))-(pow((deg1/degM),2))   );
			if (part>0.0000000001) {
				f_j = pow (part, alpha);
				}
			else {
				f_j = 0;
				} 
			f_j_2 = pow (degM, beta); 

			c_i_int+=ov*(f_j*f_j_2);

			/*chiudo il for*/
			}
	
		deg0=r_slap0_n[i+1]-r_slap0_n[i];
		deg1=r_slap1_n[i+1]-r_slap1_n[i];
		
		degM=(deg0+deg1)*1.0;
		prodM=(deg0*deg1)*1.0;
		part = (M/(M-1))*  (1-(pow((deg0/degM),2))-(pow((deg1/degM),2)) ); 

		intM=degM*part;

		if (deg0>0.0000000001) {
				f_j = pow (deg0, alpha);
				}
			else {
				f_j = 0;
				} 
			if (deg1>0.0000000001) {
				f_j_2 = pow (deg1, beta);
				}
			else {
				f_j_2=0;
				} 


		cf_i_vec_add[i]=c_i_add*(f_j+f_j_2);


		if (deg0>0.0000000001) {
				f_j = pow (deg0, alpha);
				}
			else {
				f_j = 0;
				} 
			if (deg1>0.0000000001) {
				f_j_2 = pow (deg1, beta);
				}
			else {
				f_j_2=0;
				} 



		cf_i_vec_mult[i]=c_i_mult*(f_j*f_j_2);
		//cf_i_vec_part[i]=c_i_part*part;
		if (part>0.0000000001) {
				f_j = pow (part, alpha);
				}
			else {
				f_j = 0;
				} 
			f_j_2 = pow (degM, beta); 
			


		cf_i_vec_int[i]=c_i_int*(f_j*f_j_2);
		 
		tot_add+=cf_i_vec_add[i];
		tot_mult+=cf_i_vec_mult[i];
		tot_part+=cf_i_vec_part[i];
		tot_int+=cf_i_vec_int[i];
		}
	
	
	double vec_add[N];
	double vec_mult[N];
	double vec_part[N];
	double vec_int[N];
	double tot_add_rid=0, tot_mult_rid=0, tot_part_rid=0, tot_int_rid=0;
	
	for (i=0; i<N; i++) {
		vec_add[i]=cf_i_vec_add[i]/tot_add;
		vec_mult[i]=cf_i_vec_mult[i]/tot_mult;
		vec_part[i]=cf_i_vec_part[i]/tot_part;
		vec_int[i]=cf_i_vec_int[i]/tot_int;
		tot_add_rid+=vec_add[i];
		tot_mult_rid+=vec_mult[i];
		tot_part_rid+=vec_part[i];
		tot_int_rid+=vec_int[i];
		
		}

	//sigma delle distr
	double average_add, variance_add, std_deviation_add, sum_add = 0, sum1_add = 0;
	double average_mult, variance_mult, std_deviation_mult, sum_mult = 0, sum1_mult = 0;
	
	double average_int, variance_int, std_deviation_int, sum_int = 0, sum1_int = 0;
	double sigma_norm_add, sigma_norm_mult, sigma_norm_int;
	for (i=0; i<N; i++) {
		printf("%d %g %g %g %g %g\n", i, vec_add[i],vec_mult[i],vec_int[i], alpha, beta);
		
		}

}