1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* This program computes the betweenness dependency of all the nodes
* of a graph, using Brandes' algorithm, and counting all the
* shortest paths originating from a set of nodes (potentially the
* whole set of vertices).
*
* References:
* U. Brandes. "A Faster Algorithm for Betweenness
* Centrality". J. Math. Sociol. 25 (2001), 163-177.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utils.h"
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- bet_dependency -*- **\n"
"** **\n"
"** Compute the betweenness dependency of all the nodes of a **\n"
"** network due to the shortest paths originating from a set **\n"
"** of initial nodes. If no start node is specified, compute **\n"
"** the dependency due to all the nodes of the graph. If no end **\n"
"** node is specified, compute the dependency due to the nodes **\n"
"** between node_start and the last node of the graph. **\n"
"** **\n"
"** The dependency of each node is printed on standard output. **\n"
"** **\n"
"** **\n"
"********************************************************************\n"
"\n\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" (c) Vincenzo Nicosia 2009-2017 (katolaz@yahoo.it)\n\n");
printf("Usage: %s <graph_in> [<node_start> [<node_end>]]\n\n" , argv[0]);
}
void add_predecessor(unsigned int **pred, unsigned int k){
(*pred)[0] += 1;
*pred = realloc(*pred, ((*pred)[0] + 1) * sizeof(unsigned int));
(*pred)[ (*pred)[0] ] = k;
}
/*
* Returns a list of dependencies
*/
double* compute_bet_dependency(unsigned int N, unsigned int *J_slap, unsigned int *r_slap,
unsigned int n_start, unsigned int n_end){
int i, j, k, w, idx, cur_node;
unsigned int *marked, **preds, *dist, *nj;
double *delta, *cB;
unsigned int d;
unsigned int n, nd, ndp;
dist = malloc(N * sizeof(unsigned int));
marked = malloc(N * sizeof(unsigned int));
preds = malloc(N * sizeof(unsigned int *));
nj = malloc(N * sizeof(unsigned int));
delta = malloc(N * sizeof(double));
cB = malloc(N * sizeof(double));
for (i=0; i<N; i++){
cB[i] = 0;
preds[i] = NULL;
}
for (j=n_start; j<=n_end && j<N; j++){
for(i=0; i<N; i ++){
dist[i] = N;
if (! preds[i]){
preds[i] = malloc(sizeof(unsigned int));
}
preds[i][0] = 0; /* The list of predecessors is now empty! */
nj[i] = 0;
delta[i]= 0;
}
dist[j] = 0;
nj[j] = 1;
marked[0] = j;
d = 0;
n = 0;
nd = 1;
ndp = 0;
while (d<N && nd > 0){
for(i = n; i< n+nd; i ++){
cur_node = marked[i];
for (k=r_slap[cur_node]; k<r_slap[cur_node +1] ; k++){
w = J_slap[k];
if ( dist[w] == d+1){
add_predecessor((unsigned int **)(preds + w), cur_node);
nj[w] += nj[cur_node];
}
if ( dist[w] == N){
dist[w] = d+1;
marked[n + nd + ndp] = w;
add_predecessor(preds + w, cur_node);
ndp +=1;
nj[w] += nj[cur_node];
}
}
}
n = n + nd;
nd = ndp;
ndp = 0;
d += 1;
}
for (k= n-1; k>=1; k--){
w = marked[k];
for (idx=1; idx <= preds[w][0]; idx ++ ){
i = preds[w][idx];
delta[i] += 1.0 * nj[i] / nj[w] * (1 + delta[w]);
}
cB[w] += delta[w];
}
}
free(dist);
free(marked);
for (i=0; i<N; i++){
free(preds[i]);
}
free(preds);
free(nj);
free(delta);
return cB;
}
void dump_cB(double *cB, unsigned int N){
unsigned int i;
for (i=0; i<N; i++){
printf("%g\n", cB[i]);
}
}
int main(int argc, char *argv[]){
unsigned int *J_slap=NULL, *r_slap=NULL;
unsigned int K, N;
unsigned int n_start, n_end;
double *cB;
FILE *filein;
n_start = 0;
n_end = -1;
switch (argc){
case 4:
n_end = atoi(argv[3]);
case 3:
n_start = atoi(argv[2]);
case 2:
break;
default:
usage(argv);
exit(1);
break;
}
if (!strcmp(argv[1], "-")){
/* take the input from STDIN */
filein = stdin;
}
else {
filein = openfile_or_exit(argv[1], "r", 2);
}
read_slap(filein, &K, &N, &J_slap, &r_slap);
if (n_end == -1)
n_end = N-1;
cB = compute_bet_dependency(N, J_slap, r_slap, n_start, n_end);
dump_cB(cB, N);
free(cB);
free(J_slap);
free(r_slap);
}
|