1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* This program computes the betweenness of all the nodes of a graph,
* using Brandes' algorithm, and counting all the shortest paths
* originating from a set of nodes (potentially the whole set of
* vertices).
*
* References:
* U. Brandes. "A Faster Algorithm for Betweenness
* Centrality". J. Math. Sociol. 25 (2001), 163-177.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "utils.h"
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- betweenness -*- **\n"
"** **\n"
"** Compute the betweenness of all the nodes and edges of a **\n"
"** network due to the shortest paths originating from a set **\n"
"** of initial nodes. The set can be either a sequence of **\n"
"** nodes (if the second argument is 'SEQ') or a random sample **\n"
"** from the set of all the nodes (if it is 'RND'). **\n"
"** **\n"
"** The input file is an edge-list (use '-' to read from STDIN). **\n"
"** **\n"
"** With 'SEQ': **\n"
"** If <node_start> is not specified, computes the betweenness **\n"
"** using shortest paths from *all* the nodes (WARNING: This can **\n"
"** be slow for large graphs!). If <node_end> is not specified, **\n"
"** use shortest paths from all the nodes between <node_start> **\n"
"** and the node with the largest label. **\n"
"** **\n"
"** With 'RND': **\n"
"** Compute the betweenness based on the shortest paths from **\n"
"** <num> nodes sampled uniformly at random. **\n"
"** **\n"
"** When called with just <graph_in>, use all the nodes. **\n"
"** **\n"
"** The betweenness of all the nodes is printed on standard **\n"
"** output (STDOUT), while the edge betweenness is printed on **\n"
"** standard error (STDERR) **\n"
"** **\n"
"********************************************************************\n"
"\n\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n\n");
printf("Usage: %s <graph_in> [SEQ <node_start> [<node_end>]]\n" , argv[0]);
printf("Usage: %s <graph_in> [RND <num>]\n" , argv[0]);
}
/*
* Add a node the a list of predecessors
*/
void add_predecessor(unsigned int **pred, unsigned int k){
(*pred)[0] += 1;
*pred = realloc(*pred, ((*pred)[0] + 1) * sizeof(unsigned int));
(*pred)[ (*pred)[0] ] = k;
}
/*
*
* Compute node and edge betweenness, based on shortest paths
* originating on the "num" nodes specified in "nlist". "edge_bet"
* should be an appropriately allocated (and initialised to zero!!!!)
* vector of length equal to J_slap, and will contain the values of
* edge betweenness.
*
*/
double* compute_bet_dependency(unsigned int N, unsigned int *J_slap, unsigned int *r_slap,
unsigned int *nlist, unsigned int num, double *edge_bet){
int i, j, k, w, idx, cur_node, m;
unsigned int *marked, **preds, *dist, *nj;
double *delta, *cB, val;
unsigned int d;
unsigned int n, nd, ndp;
unsigned int edge_pos;
dist = malloc(N * sizeof(unsigned int));
marked = malloc(N * sizeof(unsigned int));
preds = malloc(N * sizeof(unsigned int *));
nj = malloc(N * sizeof(unsigned int));
delta = malloc(N * sizeof(double));
cB = malloc(N * sizeof(double));
for (i=0; i<N; i++){
cB[i] = 0;
preds[i] = NULL;
}
for (m=0; m<num; m++){
/* We start from the m-th node in nlist*/
j = nlist[m];
for(i=0; i<N; i ++){
dist[i] = N;
if (! preds[i]){
preds[i] = malloc(sizeof(unsigned int));
}
preds[i][0] = 0; /* The list of predecessors is now empty! */
nj[i] = 0;
delta[i]= 0;
}
dist[j] = 0;
nj[j] = 1;
marked[0] = j;
d = 0;
n = 0;
nd = 1;
ndp = 0;
while (d<N && nd > 0){
for(i = n; i< n+nd; i ++){
cur_node = marked[i];
for (k=r_slap[cur_node]; k<r_slap[cur_node +1] ; k++){
w = J_slap[k];
if ( dist[w] == d+1){
add_predecessor((unsigned int **)(preds + w), cur_node);
nj[w] += nj[cur_node];
}
if ( dist[w] == N){
dist[w] = d+1;
marked[n + nd + ndp] = w;
add_predecessor(preds + w, cur_node);
ndp +=1;
nj[w] += nj[cur_node];
}
}
}
n = n + nd;
nd = ndp;
ndp = 0;
d += 1;
}
for (k= n-1; k>=1; k--){
w = marked[k];
for (idx=1; idx <= preds[w][0]; idx ++ ){
i = preds[w][idx];
val = 1.0 * nj[i] / nj[w] * (1 + delta[w]);
delta[i] += val;
/* Now we should update the betweenness of the edge (i,w) in
the appropriate position of the vector edge_bet*/
find_neigh_in_Jslap(J_slap, r_slap, N, i, w, &edge_pos);
edge_bet[edge_pos] += val;
find_neigh_in_Jslap(J_slap, r_slap, N, w, i, &edge_pos);
edge_bet[edge_pos] += val;
}
cB[w] += delta[w];
}
}
free(dist);
free(marked);
for (i=0; i<N; i++){
free(preds[i]);
}
free(preds);
free(nj);
free(delta);
return cB;
}
/*
* print of STDOUT the betweenness of each node
*/
void dump_cB(double *cB, unsigned int N){
unsigned int i;
for (i=0; i<N; i++){
printf("%g\n", cB[i]);
}
}
/*
* print on STDERR the betweenness of each edge
*/
void dump_edge_bet(unsigned int *J_slap, unsigned int *r_slap, unsigned int N,
double *v, FILE *fout){
unsigned int i, j;
for(i=0; i<N; i++){
for (j=r_slap[i]; j<r_slap[i+1]; j++)
fprintf(fout, "%d %d %g\n", i, J_slap[j], v[j]);
}
}
int main(int argc, char *argv[]){
unsigned int *J_slap=NULL, *r_slap=NULL;
unsigned int K, N, i;
unsigned int n_start, n_end;
unsigned int *nlist=NULL;
unsigned int num;
double *edge_bet = NULL;
double *cB;
FILE *filein;
if(argc < 2){
usage(argv);
exit(1);
}
srand(time(NULL));
if (!strcmp(argv[1], "-")){
/* take the input from STDIN */
filein = stdin;
}
else {
filein = openfile_or_exit(argv[1], "r", 2);
}
read_slap(filein, &K, &N, &J_slap, &r_slap);
nlist = malloc(N * sizeof(unsigned int));
for(i=0; i<N; i++){
nlist[i] = i;
}
n_start = 0;
n_end = N-1;
num = N;
if (argc > 3){
if(!my_strcasecmp(argv[2], "SEQ")){
n_start = atoi(argv[3]);
if (n_start > N-1)
n_start = 0;
if (argc > 4){
n_end = atoi(argv[4]);
}
else{
n_end = N-1;
}
num = n_end - n_start + 1;
}
else if (!my_strcasecmp(argv[2], "RND")){
num = atoi(argv[3]);
n_start = 0;
n_end = num-1;
if (num > N || num < 1)
num = N;
shuffle_vector(nlist, N);
}
}
sort_neighbours(J_slap, r_slap, N);
edge_bet = malloc(K * sizeof(double));
memset(edge_bet, 0, K * sizeof(double));
cB = compute_bet_dependency(N, J_slap, r_slap, nlist+n_start, num, edge_bet);
dump_cB(cB, N);
dump_edge_bet(J_slap, r_slap, N, edge_bet, stderr);
free(cB);
free(J_slap);
free(r_slap);
free(edge_bet);
free(nlist);
}
|