1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* Enumerate all the three-nodes subgraphs in a directed network, and
* compute the significance of their number with respect to the
* corresponding configuration model ensemble.
*
* References:
*
* [1] R. Milo et al. "Network Motifs: Simple Building Blocks of
* Complex Networks". Science 298 (2002), 824-827.
*
* [2] R. Milo et al. "Superfamilies of evolved and designed
* networks." Science 303 (2004), 1538-1542
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "utils.h"
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- f3m -*- **\n"
"** **\n"
"** Count all the 3-node subgraphs of a directed graph given as **\n"
"** input, and compute the relevance (z-score) of each motif **\n"
"** with respect to the corresponding configuration model graph **\n"
"** ensemble. **\n"
"** **\n"
"** The file 'graph_in' contains the edge list of the graph. **\n"
"** **\n"
"** The program prints on STDOUT one line for each of the 13 **\n"
"** motifs, in the format **\n"
"** **\n"
"** motif count mean_rnd std_rnd z-score **\n"
"** **\n"
"** where 'motif' is the motif number (an integer between 1 and **\n"
"** 13), 'count' is the number of subgraphs of that type found **\n"
"** in 'graph_in', 'mean_rnd' is the average number of those **\n"
"** subgraphs found in the randomised realisations of the graph, **\n"
"** 'std_rnd' is the standard deviation associated to 'avg_rnd', **\n"
"** and 'z-score' is the normalised deviation of 'count' from **\n"
"** 'mean_rnd'. **\n"
"** **\n"
"** If the (optional) parameter 'num_random' is provided, use **\n"
"** that number of random realisations to compute the z-score. **\n"
"** **\n"
"********************************************************************\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" Please visit http://www.complex-networks.net for more information\n\n"
" (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n"
"********************************************************************\n\n"
);
printf("Usage: %s <graph_in> [<num_random>]\n", argv[0]);
}
#define MIN(x, y) ((x) < (y) ? (x) : (y))
typedef struct{
unsigned int N;
unsigned int K;
unsigned int *J_slap;
unsigned int *r_slap;
} graph_t;
typedef struct{
double f_count_real[13];
int num_rnd;
double **f_count_rnd;
} mstats_t;
char perm12[3][3] = {{0, 1, 0},
{1, 0, 0},
{0, 0, 1}};
char perm13[3][3] = {{0, 0, 1},
{0, 1, 0},
{1, 0, 0}};
char perm23[3][3] = {{1, 0, 0},
{0, 0, 1},
{0, 1, 0}};
void shuffle_list(unsigned int *v, unsigned int K){
int i, pos;
for(i=K-1; i>=0; i--){
pos = rand() % K;
if (pos != i){
v[i] ^= v[pos];
v[pos] ^= v[i];
v[i] ^= v[pos];
}
}
}
int is_simple_graph(unsigned int *J_slap, unsigned int *r_slap, unsigned int K,
unsigned int N){
int i, j;
for(i=0; i<N; i++){
for(j=r_slap[i]; j<r_slap[i+1]; j++){
if (J_slap[j] == i) /* If there is a self-loop....*/
return 0;
if (j > r_slap[i] && J_slap[j] == J_slap[j-1]) /* or a double edge... */
return 0;
}
}
return 1;
}
int is_loop_free(unsigned int *J_slap, unsigned int *r_slap, unsigned int K,
unsigned int N){
int i, j;
for(i=0; i<N; i++){
for(j=r_slap[i]; j<r_slap[i+1]; j++){
if (J_slap[j] == i) /* There is a self-loop....*/
return 0;
}
}
return 1;
}
unsigned int* sample_conf_model_smart(unsigned int *J_slap, unsigned int *r_slap,
unsigned int K, unsigned int N){
unsigned int *new_J;
new_J = malloc( K * sizeof(unsigned int));
memcpy(new_J, J_slap, K *sizeof(unsigned int));
while(1){
shuffle_list(new_J, K);
sort_neighbours(new_J, r_slap, N);
if(is_loop_free(new_J, r_slap, K, N))
break;
}
return new_J;
}
void apply_perm_3(char m[3][3], char p[3][3]){
char res[3][3];
int i, j, k;
for (i=0; i<3; i++){
for(j=0; j<3; j++){
res[i][j] = 0;
for(k=0; k<3; k++){
res[i][j] += p[i][k] * m[k][j];
}
}
}
for (i=0; i<3; i++){
for(j=0; j<3; j++){
m[i][j] = 0;
for(k=0; k<3; k++){
m[i][j] += res[i][k] * p[k][j];
}
}
}
}
int row_value(char r[3]){ /* The "value" of a row of bits is
equal to the binary representation
of the row, in big-endian (i.e.,
LSB is r[0], MSB is r[2])*/
return r[0] + (r[1]<<1) + (r[2]<<2);
}
int matrix_value(char m[3][3]){ /* The value of a matrix of
bits is equal to the binary
representation of the
matrix, in big endian,
starting from the first row
(LSB is m[0][0], MSB is
m[2][2])*/
return row_value(m[0]) + (row_value(m[1])<<3) + (row_value(m[2])<<6);
}
void permute_matrix_3(char m[3][3], int n1, int n2){
int perm;
if (n1 == n2){
return;
}
if (n1 > n2){
n1 ^= n2;
n2 ^= n1;
n1 ^= n2;
}
perm = n1 + (n2<<2);
switch(perm){
case (1 + (2<<2)): /* permute 1 with 2 */
apply_perm_3(m, perm12);
break;
case (1 + (3<<2)): /* permute 1 with 3 */
apply_perm_3(m, perm13);
break;
case (2 + (3<<2)): /* permute 2 with 3 */
apply_perm_3(m, perm23);
break;
}
}
/* Load the input graph. We construct two versions of the graph,
i.e. the directed versions G_out ( containing the list of
out-neighbours of each node) and the underlying undirected graph
G_u
N.B.: This is quite inefficient at the moment, since it reads the
file twice, and could be replaced by one call to read_ij and two
appropriate calls to convert_ij2slap.... */
void load_graph(FILE *fin, graph_t *G_u, graph_t *G_out){
/*FIXME!!!! WE CANNOT REWIND THE STANDARD OUTPUT !!!!! */
read_slap(fin, &(G_u->K), &(G_u->N), &(G_u->J_slap), &(G_u->r_slap));
sort_neighbours(G_u->J_slap, G_u->r_slap, G_u->N);
rewind(fin);
read_slap_dir(fin, &(G_out->K), &(G_out->N), &(G_out->J_slap), &(G_out->r_slap));
sort_neighbours(G_out->J_slap, G_out->r_slap, G_out->N);
rewind(fin);
}
void dump_matrix_3(char m[3][3]){
int i, j;
for(i=0; i<3; i++){
for(j=0; j<3; j++){
printf("%d ", m[i][j]);
}
printf("\n");
}
}
int motif_number(char m[3][3]){
char m0[3][3];
char m1[3][3];
char m2[3][3];
char m3[3][3];
int v, v0, v1, v2, v3, v4, v5;
int i,j;
for(i=0; i<3; i++){
for(j=0; j<3; j++){
m0[i][j] = m[i][j];
}
}
if (row_value(m[0]) == 0){
permute_matrix_3(m0, 1, 2);
}
if (row_value(m0[1]) == 0){
permute_matrix_3(m0, 2, 3);
}
for(i=0; i<3; i++){
for(j=0; j<3; j++){
m1[i][j] = m0[i][j];
m2[i][j] = m0[i][j];
m3[i][j] = m0[i][j];
}
}
/* We consider here all the 6 possible permutations... */
/* {0, 1, 2} */
v0 = matrix_value(m0);
/* {1, 0, 2} */
permute_matrix_3(m1, 1, 2);
v1 = matrix_value(m1);
/* {2, 1, 0} */
permute_matrix_3(m2, 1, 3);
v2 = matrix_value(m2);
/* {0, 2, 1} */
permute_matrix_3(m3, 2, 3);
v3 = matrix_value(m3);
/* {1, 2, 0} */
permute_matrix_3(m2, 1, 2);
v4 = matrix_value(m2);
/* {2, 0, 1} */
permute_matrix_3(m3, 1, 2);
v5 = matrix_value(m3);
v = MIN (MIN( MIN( MIN( MIN( v0, v1), v2), v3), v4), v5);
switch(v){
case 6:
return 0;
case 12:
return 1;
case 14:
return 2;
case 36:
return 3;
case 38:
return 4;
case 46:
return 5;
case 74:
return 6;
case 78:
return 7;
case 98:
return 8;
case 102:
return 9;
case 108:
return 10;
case 110:
return 11;
case 238:
return 12;
default:
fprintf(stderr, "No motif with number %d! Exiting\n", v);
dump_matrix_3(m);
exit(5);
}
}
int get_motif_3(int n1, int n2, int n3, graph_t *G_out){
char m[3][3];
unsigned int n[3] = {n1, n2, n3};
int i, j, v;
for(i=0; i<3; i++){
for (j=0; j<3; j++){
if (is_neigh(G_out->J_slap, G_out->r_slap, G_out->N,
n[i], n[j])){
m[i][j] = 1;
}
else{
m[i][j] = 0;
}
}
}
v = motif_number(m);
return v;
}
void find_subgraphs_3(graph_t *G_u, graph_t *G_out, double *f_cnt){
int i, j, k, n1, n2;
int val;
for (i=0; i<G_u->N; i++){
for(n1 = G_u->r_slap[i]; n1<G_u->r_slap[i+1]; n1++){
/* j is a first-neighbour of i in G_u */
j = G_u->J_slap[n1];
/* avoid multiple entries in the J_slap vector */
if (n1 > G_u->r_slap[i] && j == G_u->J_slap[n1-1])
continue;
for(n2 = n1+1; n2 < G_u->r_slap[i+1]; n2++){
/* and k is another first neighbour of i in G_u */
k = G_u->J_slap[n2];
/* avoid multiple entries in the J_slap vector */
if (n2 > n1+1 && k == G_u->J_slap[n2-1])
continue;
/* now, if j and k are connected by an edge, we consider this
triangle only if i<j<k (in order to avoid multiple counts).
Otherwise, if i-j-k is an open triad, we have to consider
it now, because there is no other possibility to discover
it */
if((is_neigh(G_u->J_slap, G_u->r_slap, G_u->N, j, k) &&
(j < i || k < j || k < i)) || (j==k))
continue;
val = get_motif_3(i, j, k, G_out);
f_cnt[val] +=1;
}
}
}
}
void init_graph(graph_t *G1){
G1->J_slap = G1->r_slap = NULL;
}
void init_stats(mstats_t *st, int n_rand){
int i;
st->f_count_rnd = malloc(n_rand * sizeof(double*));
st->num_rnd = n_rand;
for(i=0; i<13; i++){
st->f_count_real[i] = 0;
}
for(i=0; i<n_rand; i++){
st->f_count_rnd[i] = malloc(13 * sizeof(double));
memset(st->f_count_rnd[i], 0, 13 * sizeof(double));
}
}
void compute_rnd_st_mean_std(mstats_t *st, double *mean, double *std){
double sum[13], sum2[13];
double val, n;
int i, j;
n = st->num_rnd;
for (i=0; i<13; i++){
sum[i] = sum2[i] = 0;
}
if (n == 0)
return;
for(i=0; i<n; i++){
for(j=0; j<13; j++){
val = st->f_count_rnd[i][j];
sum[j] += val;
sum2[j] += val*val;
}
}
for(i=0; i<13; i++){
mean[i] = sum[i] / n;
if (sum2[i] > 0)
std[i] = sqrt(sum2[i] * 1.0/(n-1) - 1.0/( n * (n-1)) * sum[i]*sum[i]);
else
std[i] = 0.0;
}
}
void dump_stats(mstats_t *st){
int i;
double v_mean[13], v_std[13], x;
memset(v_mean, 0, 13 * sizeof(double));
memset(v_std, 0, 13 * sizeof(double));
compute_rnd_st_mean_std(st, v_mean, v_std);
for(i=0; i<13; i++){
x = st->f_count_real[i];
if (v_std[i] > 0)
printf("%-2d %12.0f %15.2f %10.3f %+10.3f\n", i+1, x,
v_mean[i], v_std[i], 1.0 * (x - v_mean[i])/v_std[i] );
else
printf("%-2d %12.0f %15.2f %10.3f %+10.3f\n", i+1, x,
v_mean[i], v_std[i], 0.0);
}
}
void randomise_graph(graph_t *G_out, graph_t *RNDG_out, graph_t *RNDG_u){
static unsigned int *I, *J;
static unsigned int I_size, J_size;
unsigned int *tmp;
if (!I || I_size < 2*G_out->K){
tmp = realloc(I, G_out -> K * 2 * sizeof(unsigned int));
VALID_PTR_OR_EXIT(tmp, 3);
I = tmp;
I_size = 2*G_out->K;
}
if (!J || J_size < 2*G_out->K){
tmp = realloc(J, G_out -> K * 2 * sizeof(unsigned int));
VALID_PTR_OR_EXIT(tmp, 3);
J = tmp;
J_size = 2*G_out->K;
}
if (RNDG_out->J_slap){
free(RNDG_out->J_slap);
RNDG_out->J_slap = NULL;
}
RNDG_out->J_slap = sample_conf_model_smart(G_out->J_slap, G_out->r_slap, G_out->K, G_out->N);
tmp = realloc(RNDG_out->r_slap, (G_out->N + 1) * sizeof(unsigned int));
VALID_PTR_OR_EXIT(tmp, 19);
RNDG_out->r_slap = tmp;
memcpy(RNDG_out->r_slap, G_out->r_slap, (G_out->N + 1) * sizeof(unsigned int));
RNDG_out->N = G_out->N;
RNDG_out->K = G_out->K;
convert_slap2ij(RNDG_out->J_slap, RNDG_out->r_slap, RNDG_out->N, I, J);
/* copy J at the end of I */
memcpy(&(I[G_out->K]), J, G_out->K * sizeof(unsigned int));
/* copy I at the end of J */
memcpy(&(J[G_out->K]), I, G_out->K * sizeof(unsigned int));
RNDG_u->N = convert_ij2slap(I, J, 2*G_out->K, & (RNDG_u->r_slap), &(RNDG_u->J_slap));
RNDG_u->K = 2 * G_out->K;
sort_neighbours(RNDG_u->J_slap, RNDG_u->r_slap, RNDG_u->N);
sort_neighbours(RNDG_out->J_slap, RNDG_out->r_slap, RNDG_out->N);
if (!is_loop_free(RNDG_u->J_slap, RNDG_u->r_slap, RNDG_u->K, RNDG_u->N)){
fprintf(stderr, "Error!!!! The undirected version of the graph is not loop-free!!!!\n");
exit(23);
}
}
int main(int argc, char *argv[]){
graph_t G_u, G_out, RNDG_u, RNDG_out;
mstats_t st;
FILE *filein;
unsigned int nr;
int i;
if(argc < 2){
usage(argv);
exit(1);
}
filein = openfile_or_exit(argv[1], "r", 2);
if (argc > 2){
nr = atoi(argv[2]);
}
else{
nr = 0;
}
init_stats(&st, nr);
init_graph(&G_u);
init_graph(&G_out);
load_graph(filein, &G_u, &G_out);
fclose(filein);
find_subgraphs_3(&G_u, &G_out, st.f_count_real);
srand(time(NULL));
/* Now we create n_r random networks with the same degree
distribution, and we perform motifs analysis on each of them */
init_graph(&RNDG_out);
init_graph(&RNDG_u);
for(i=0; i<nr; i++){
/* Create the random graph */
randomise_graph(&G_out, &RNDG_out, &RNDG_u);
/* call find_subgraphs_3 in it */
find_subgraphs_3(&RNDG_u, &RNDG_out, st.f_count_rnd[i]);
//show_progress(stderr, "Randomised networks: ", i+1, nr);
}
//fprintf(stderr,"\n");
/* Now we should print the results on output */
dump_stats(&st);
free(G_u.J_slap);
free(G_u.r_slap);
free(G_out.J_slap);
free(G_out.r_slap);
free(RNDG_u.J_slap);
free(RNDG_u.r_slap);
free(RNDG_out.J_slap);
free(RNDG_out.r_slap);
return 0;
}
|