1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* This program implements the Girvan-Newman algorithm for community
* detection, based on the removal of edges with largest betweenness.
*
*
* References:
*
* [1] M. Girvan and M. E. J. Newman. "Community structure in social
* and biological networks". P. Natl. Acad. Sci. USA 99 (2002),
* 7821--7826.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "utils.h"
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- gn -*- **\n"
"** **\n"
"** Find the communities of the input graph 'graph_in' using **\n"
"** the Girvan-Newman algorithm (successive removal of edges **\n"
"** with high betweeneess). **\n"
"** **\n"
"** The input file 'graph_in' is an edge-list: **\n"
"** **\n"
"** I_1 J_1 **\n"
"** I_2 J_2 **\n"
"** I_3 J_3 **\n"
"** ... ... **\n"
"** I_K J_K **\n"
"** **\n"
"** If 'graph_in' is equal to '-' (dash), read the file from **\n"
"** the standard input (STDIN). **\n"
"** **\n"
"** The program prints on STDOUT the partition corresponding **\n"
"** to the largest value of modularity, in the format: **\n"
"** **\n"
"** node_1 comm_1 **\n"
"** node_2 comm_2 **\n"
"** node_3 comm_3 **\n"
"** ..... **\n"
"** **\n"
"** where 'comm_1' is the community to which 'node_1' belongs. **\n"
"** **\n"
"** The program prints on STDERR the number of communities and **\n"
"** the value of modularity obtained after the removal of each **\n"
"** edge, in the format: **\n"
"** **\n"
"** **\n"
"** ## nc: NUM_COMM Q_max: Q_MAX **\n"
"** nc_1 Q_1 **\n"
"** nc_2 Q_2 **\n"
"** nc_3 Q_3 **\n"
"** ... **\n"
"** **\n"
"** where 'nc_1', 'nc_2', 'nc_3', etc. is the number of **\n"
"** communities (connected components) remaining after the **\n"
"** 1st, 2nd, 3rd, etc. edge has been removed, and 'Q_1', **\n"
"** 'Q_2', 'Q_3', etc. are the value of the modularity **\n"
"** function of the corresponding node partition. The first **\n"
"** output line reports the number of communities NUM_COMM **\n"
"** and corresponding value of modularity Q_MAX of the best **\n"
"** partition found. **\n"
"** **\n"
"********************************************************************\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" Please visit http://www.complex-networks.net for more information\n\n"
" (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n"
"********************************************************************\n\n"
);
printf("Usage: %s <graph_in>\n", argv[0]);
exit(1);
}
void add_predecessor(unsigned int **pred, unsigned int k){
(*pred)[0] += 1;
*pred = realloc(*pred, ((*pred)[0] + 1) * sizeof(unsigned int));
(*pred)[ (*pred)[0] ] = k;
}
/*
*
* Compute node and edge betweenness, based on shortest paths
* originating on the "num" nodes specified in "nlist". "edge_bet"
* should be an appropriately allocated (and initialised to zero!!!!)
* vector of length equal to J_slap, and will contain the values of
* edge betweenness.
*
*/
double* compute_bet_dependency_active(unsigned int N, unsigned int *J_slap, unsigned int *r_slap,
double *edge_bet, char *active){
static unsigned int *marked, **preds, *dist, *nj;
static double *delta, *cB;
int i, j, k, w, idx, cur_node;
double val;
unsigned int d;
unsigned int n, nd, ndp;
unsigned int edge_pos;
if (!dist)
dist = malloc(N * sizeof(unsigned int));
if (!marked)
marked = malloc(N * sizeof(unsigned int));
if (!preds)
preds = malloc(N * sizeof(unsigned int *));
if (!nj)
nj = malloc(N * sizeof(unsigned int));
if (!delta)
delta = malloc(N * sizeof(double));
if (!cB)
cB = malloc(N * sizeof(double));
for (i=0; i<N; i++){
cB[i] = 0;
preds[i] = NULL;
}
for (j=0; j<N; j++){
for(i=0; i<N; i++){
dist[i] = N;
if (preds[i] == NULL){
preds[i] = malloc(sizeof(unsigned int));
}
preds[i][0] = 0; /* The list of predecessors is now empty! */
nj[i] = 0;
delta[i]= 0;
}
dist[j] = 0;
nj[j] = 1;
marked[0] = j;
d = 0;
n = 0;
nd = 1;
ndp = 0;
while (d<N && nd > 0){
for(i = n; i< n+nd; i ++){
cur_node = marked[i];
for (k=r_slap[cur_node]; k<r_slap[cur_node +1] ; k++){
w = J_slap[k];
if (!active[k])
/* discard inactive links */
continue;
if ( dist[w] == d+1){
add_predecessor((unsigned int **)(preds + w), cur_node);
nj[w] += nj[cur_node];
}
if ( dist[w] == N){
dist[w] = d+1;
marked[n + nd + ndp] = w;
add_predecessor(preds + w, cur_node);
ndp +=1;
nj[w] += nj[cur_node];
}
}
}
n = n + nd;
nd = ndp;
ndp = 0;
d += 1;
}
for (k= n-1; k>=1; k--){
w = marked[k];
for (idx=1; idx <= preds[w][0]; idx ++ ){
i = preds[w][idx];
val = 1.0 * nj[i] / nj[w] * (1 + delta[w]);
delta[i] += val;
/* Now we should update the betweenness of the edge (i,w) in
the appropriate position of the vector edge_bet*/
find_neigh_in_Jslap(J_slap, r_slap, N, i, w, &edge_pos);
edge_bet[edge_pos] += val;
find_neigh_in_Jslap(J_slap, r_slap, N, w, i, &edge_pos);
edge_bet[edge_pos] += val;
}
cB[w] += delta[w];
}
}
//free(marked);
return cB;
}
/**
*
* Depth-First search on the node i....
*
*/
int dfs_active(unsigned int i, unsigned int *J_slap, unsigned int *r_slap,
unsigned int N, unsigned int nc, unsigned int *ic, unsigned int *f,
char reset, char *active){
static unsigned int time;
unsigned int j, s;
if(reset){
time = 0;
}
ic[i] = nc;
s = 1;
time += 1;
for(j=r_slap[i]; j<r_slap[i+1]; j++){
if (ic[J_slap[j]] == 0 && active[j]){
s += dfs_active(J_slap[j], J_slap, r_slap, N, nc, ic, f, 0, active);
}
}
time += 1;
f[i] = time;
return s;
}
/**
*
* Find all the components of the given graph
*
*/
int components(unsigned int *J_slap, unsigned int *r_slap, unsigned int N,
unsigned int *ic, unsigned int *f, unsigned int *sizes,
char *active){
unsigned int nc, s;
unsigned int i;
for(i=0; i<N; i++){
ic[i] = 0;
f[i] = 0;
}
nc = 0;
for(i=0; i<N; i++){
while( i<N && ic[i] != 0)
i += 1;
if (i == N)
break;
nc += 1;
s = dfs_active(i, J_slap, r_slap, N, nc, ic, f, 1, active);
sizes[nc] = s;
}
return nc;
}
/**
* find the position of the element in v with maximal value. If there
* are more than one element with the same value, return the position
* of the last one found. In order to introduce randomness, the search
* starts from a position sampled uniformly at random
*
*/
unsigned int find_pos_max_rand(double *v, unsigned int K, char *active){
unsigned int i;
double max;
unsigned int base, pos_max;
base = rand() % K;
while(! active[base] )
base = (base + 1) % K;
max = v[base];
pos_max = base;
for(i=base; i<base + K; i++){
if (v[i % K] >= max && active[i % K]){
max = v[i % K];
pos_max = i % K;
}
}
return pos_max;
}
unsigned int find_pos_max(double *v, unsigned int K, char *active){
unsigned int i;
double max;
unsigned int base, pos_max;
base = 0;
while(! active[base] )
base = (base + 1) % K;
max = v[base];
pos_max = base;
for(i=base; i<base + K; i++){
if (v[i % K] >= max && active[i % K]){
max = v[i % K];
pos_max = i % K;
}
}
return pos_max;
}
/* This function compute the modularity function of the partition
'part'...*/
double compute_modularity(unsigned int *J_slap, unsigned int *r_slap, unsigned int N,
unsigned int *part, unsigned int nc){
static double *e, *a;
unsigned int i, j, n, K;
unsigned int ci, cj;
double Q;
if(!e)
e = malloc((N+1) * sizeof(double));
if(!a)
a = malloc((N+1) * sizeof(double));
memset(e, 0, (N+1) * sizeof(double));
memset(a, 0, (N+1) * sizeof(double));
K = r_slap[N];
for (i=0; i<N; i++){
ci = part[i];
a[ci] += (r_slap[i+1] - r_slap[i]);
for(j=r_slap[i]; j< r_slap[i+1]; j++){
cj = part[J_slap[j]];
if (ci == cj){
e[ci] += 1;
}
}
}
Q = 0.0;
for (n=1; n<=nc; n++){
Q += 1.0 * e[n]/(1.0 * K ) - pow(1.0 * a[n]/K, 2);
}
return Q;
}
unsigned int* girvan_newman(unsigned int *J_slap, unsigned int *r_slap, unsigned int N){
unsigned int K, nc, pos;
double *edge_bet = NULL;
char *active = NULL;
double Q, Q_max;
unsigned int *ic, *f, *sizes;
unsigned int *best_part;
int i, j, nc_max;
K = r_slap[N];
ic = malloc((N) * sizeof(unsigned int));
f = malloc(N * sizeof(unsigned int));
sizes = malloc((N+1) * sizeof(unsigned int));
best_part = malloc(N * sizeof(unsigned int));
/* We initialise the vector "active" which idicates active edges */
active = malloc(K * sizeof(char));
for (i=0; i<K; i++){
active[i] = 1;
}
edge_bet = malloc(K * sizeof(double));
nc_max = 0;
Q_max = -1000;
for(j=0; j<K; j++){
memset(edge_bet, 0, K * sizeof(double));
/* compute edge betweenness */
compute_bet_dependency_active(N, J_slap, r_slap, edge_bet, active);
/* find edge with maximal betweenness... */
pos = find_pos_max_rand(edge_bet, K, active);
/* and knock it down */
active[pos] = 0;
/* compute connected components */
nc = components(J_slap, r_slap, N, ic, f, sizes, active);
/* compute the modularity of the partition induced by components */
Q = compute_modularity(J_slap, r_slap, N, ic, nc);
fprintf(stderr, "%d %g\n", nc, Q);
/* if Q is maximal, save the current partition */
if (j > 0){
if (Q > Q_max){
Q_max = Q;
nc_max = nc;
memcpy (best_part, ic, N * sizeof(unsigned int));
}
}
else{
Q_max = Q;
memcpy(best_part, ic, N*sizeof(unsigned int));
}
}
/* Return the best partition */
fprintf(stdout, "### nc: %d Q_max: %g\n", nc_max, Q_max);
free(f);
free(ic);
free(sizes);
free(edge_bet);
free(active);
return best_part;
}
void dump_partition(unsigned int *p, unsigned int N){
unsigned int i;
for(i=0; i<N; i++){
fprintf(stdout, "%d %d\n", i, p[i]);
}
}
int main(int argc, char *argv[]){
unsigned int *J_slap=NULL, *r_slap=NULL;
unsigned int K, N;
FILE *filein;
unsigned int *part;
if(argc < 2){
usage(argv);
exit(1);
}
srand(time(NULL));
if (!strcmp(argv[1], "-")){
/* take the input from STDIN */
filein = stdin;
}
else {
filein = openfile_or_exit(argv[1], "r", 2);
}
read_slap(filein, &K, &N, &J_slap, &r_slap);
sort_neighbours(J_slap, r_slap, N);
fclose(filein);
part = girvan_newman(J_slap, r_slap, N);
dump_partition(part, N);
free(J_slap);
free(r_slap);
free(part);
}
|